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SUMMARY PAGE

THE PROBLEM

Roughly 5% of student naval aviators fail the advanced phase of flight training. At
g this stage of training, the Navy has spent between $300,000 and $1,000,000 per student.
Any reduction in this attrition rate through prior screening would be of great economic
benefit to the Navy. Computer-based performance tests developed at the Naval Aerospace
' Medical Research Laboratory (NAMRL) were assessed to determine whether they could
augment the present medical screening standards and thereby help identify potential

failures in advanced flight training.

FINDINGS

A weak statistical relationship exists between a dual-task performance test, accession
source, college major, an aptitude test, and success in advanced flight training. Discrim-
inant analysis was employed to find a linear composite score of these variables that could
be used to classify a student as a probable pass or fail in advanced flight training. For
example, the model presented .n this report could reduce failures by 50% at the cost of
rejecting roughly 20% of those students who eventually passed. A Bayesian analysis of
the success rate parameter showed that this particular model did result in a significant
improvement over the present selection system.

RECOMMENDATIONS

These data can be used to make cost-benefit tradeoffs for aviation selection policy
making. The author recommends that the dual-task performance test and accompanying
statistical model discussed in this report be considered for operational implementation

v as part of an improved medical selection process for potential Navy and Marine Corps
aviators.

Acogeh 1on For )
N '“ N
U'H ) ?u% .I
R EATTRY J- *
J“.L Vil weatl U’.;,..ﬂ._.-...__.....f

-
C]'”’E»\

. ww e e ot e et va e et
1 . . D':»-‘Hua.lu)/
¢

MA* ialtilive Ccdea
,:vail an;/ox T
Bpocial

@(\




Acknowledgments

I would like to acknowledge the valuable contributions to this report made by my
colleagues in the Aviation Selection Division: LCDR Daniel L. Dolgin, LT David R.
Street, Dr. Tatree Nontasak, Mrs. Kathy Helton, and to Dr. Harold Delaney of the
University of New Mexico.

ii




INTRODUCTION

In a previous report [1] computer-based performance tests were evaluated on how well
they could predict the success of student naval aviators in the primary phase of flight
training. Thereafter, the progress of these student aviators was monitored throughout the
flight training program through the receipt of criterion data on grades, success, pipeline,
et ceiera, from Chief, Nava! Aviation Training (CNATRA) in Corpus Christi, Texas.

When the data received during the intermediate and advanced phases of flight training
were subsequently analyzed, no significant results were found between our battery of
tests and success in the intermediate phase of flight training. We did, nowever, uncover
a significant association between a dual-task performance test and success in advanced
flight training,.

These results are presented using a different method, as compared to the first report,
for quantifying the importance of the data. Specifically, a linear composite of the test
battery scores is constructed by using discriminant analysis. The discriminant function
scores are then used to classify the students as to success or failure in advanced flight
training. The success rate using these tests is then compared to the success rate under the
present system. The formal technique employed here for making this comparison is the
traditional Bayesian approach of calculating posterior probability density functions for
the success rate parameter. Finally, confidence intervals are used to show the quantifiable
consequences for Navy planners if they should decide to usz these tests for selection
purposes.

A counter-argument based on the hypothetical inflexibility of the training command
infrastructure due to fixed costs is presented in the Discussion. If such an argument has
any merit, it tends to vitiate any optimism for implementing these tests for reasons due
solely to the statistical results.

METHODS

SUBJECTS

Student naval aviators, preselected for naval aviation flight training on the basis of
their performance on the current Navy and Marine Corps aviation selection tests and
medical examinations, participated in the study. The actual number of subjects for
specific cases are presented in the Results section. The subjects were informed that a)
the investigation involved performing tasks in problem solving and perceptual and motor
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skills, b) their test performance would not affect their continuation in the program nor
be entered into their permanent service records and, c) results would be used solely for
the purpose of developing an improved aviation selection program for the Navy.

APPARATUS

All testing was conducted on Apple Ile microcomputers with Apple monochrome moni-
tors (CRTs). Subjects used a numeric keypad to respond to discrete stimuli. All responses
were recorded to millisecond accuracy. A Measurement Systems Incorporated (MSI-542)
control stick was used for joystick and throttle control during the tracking tasks. Rud-
derpedal controls were measured using a variable resistor connected to a computer A/D
channel. The jo,stick was mounted on the forward edge of the testing console at a
centered position. The throttle was located on the left side of the testing booth. The
rudderpedals were located so that the subjects could easily place both feet while sitting
in the testing booth. Subjects operated the joystick with the right hand, the throttle
with the left hand, and the rudderpedals with both feet.

PROCEDURE

All candidates were tested before entering flight training and after completing a 14-
week basic military indoctrination program for AOC officers or a 6-week program for stu-
dents already commissioned. All instructions were presented to the subjects on the CRT
for each task individually. Test administrators intervened only to begin the computer
program for each task and to answer questions posed by subjects. The test administra-
tion time of the battery ranged from 3.7 to 4.0 h. The order of the tasks and the stimuli
within each test were identical for all subjects. Subjects received a 3-4 min rest period
between tasks. All testing took place in an air-conditioned laboratory. :

PREDICTOR TESTS

The entire complement of tests in the NAMRL computer-based performance test bat-
tery is described in [1). We repeat the description of the Horizontal Tracking test, the
Absolute Diiference test, and the combined Absolute Difference-Horizontal Tracking test
because these tests exhibited an association with success in advanced flight training,
Damos and Gibb (2] explain the rationale for these tests and present some preliminary
results comparing the performance of experienced fleet pilots to student naval aviators
on these tests.

Several background variables were recorded for each subject. These included:
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1. Initial aviation sclection test scores, i.e. Academic Qualification Test (AQT)
and Flight Aptitude Rating (FAR)

. Previous civilian flight training

. Age

. Gender

2
3
4. Source of procurement
5
6. College major

Previous civilian flight training was treated as a continuous variable using the self-
reported number of total flight hours a subject had logged. Total flight bours included
both solo and dual pilot training hours.

Source of procurement included six distinct groups:

1. Aviation Officer Candidate School (college graduates entering directly into
the military)

2. Naval Academy graduates

3. Naval cadets (prior enlisted service or 60 college credits with numerous other
criteria)

4. Marine Corps Officer Program
5. Naval Reserve Officer Training Corps

6. Other (direct procurement, Merchant Marine Academy, enlisted commis-
. sioning programs)

College major was classified into one of five general disciplines:

. Engineering and math

. Physical sciences (biology, geology, physics, etc.)

1
2
3. Business
4. Social sciences (psychology, sociology, history, etc.)
5

. Physical education




HORIZONTAL TRACKING

In this test, the subject was required to learn a one-dimensional tracking task. To
perform the test successfully, the subject had to anticipate the movement of a square
on the computer screen and manipulate she joystick to counterbalance the movement in
order to keep the square centered on a fixed central point on the screen. For example, if
the square was moving off center to the right, the subject would move the joystick to the
left in order io re-center the square. Specifically, the subject maintained a 0.6-cn1 square
centered in a 9.75 by 1.25-cm rectangle by moving the joystick either left or right. The
square was driven by a forcing function programmed into the computer. Each subject
received ten 2-min trials separated by a 30-s rest. The dependent measure was RMS error.
Total testing time was 25-min. This tcst was designed to measure compensatory tracking
skills. A compensatory tracking task is defined as one in which only the difference (the
error) between the command input and the system output is displayed. [3]

ABSOLUTE DIFFERENCE TASK

In this test, the subject was visuall; presented with a random number between 1
and 9 on the CRT. This number disappeared from the screen and was then followed
immediately with another number. The subject was required to press the correct button
on the numeric keypad to indicate the absolute difference between the number presently
displayed on the CRT screen and the number shown on the screen in the previous trial.
The numbers were presented in such a manner that only absolute differences from 1 to 4
were correct. When the subject made a response, a new number appeared on the CRT,
«nd again the subject calculated the absolute difference between the number previously
presented and the number currently displayed. The subject was instructed to use only
his right hand in responding with the numeric keypad. Speed and accuracy . response
were equally emphasized. This test was self-paced and consisted of fifteen 2-min trials.
Total testing time was 30 min. The dependent measures consisted of number correct,
number of errors, RT on correct responses, and RT on error responses. This task was
ecssentially a measure of short-term memory, memory search, and encoding,

ABSOLUTE DIFFERENCE AND HORIZONTAL TRACKING

As part of the emphasis on time-sharing ability within the NAMRL battery, the hor-
izontal tracking and absolute difference tasks were combined for a measure of dual-task
performance. For this combination of tasks, the subject performed the horizontal track-
ing task and the absolute difference task simultaneously. The number for the absolute
difference task was centered above the tracking task and touched the top of the tracking
task. The subject controlled the tracking task with his right hand and, for the absolute
difference task, pressed a number on the keypad with his left hand. The subject was




instructed that the two tasks were equally important. The subject received five 2-min
trials separated by rest periods of 30-60 s. Total testing time for the dual-task combina-
tion was 15 min. Figure 1 depicts this dual-task test as it appeared to the subject on the
conlputer screen.

Figure 1. The one-dimensional tracking test and absolute difference test combined tc form a dual-task
test.

RESULTS

DATA BASE AND PREFROCESSING OF VARIABLES

The original data base consisted of 144 variables on 1293 student naval aviators
(SNAs). Since the previously cited report on primary flight training, additional data
from CNATRA have been received on the intermediate and advanced phases of flight
training. When these data were added to the data base, there was pass or fail infor-
mation for the advanced phase of flight training on 836 SNAs. There was a substantial
amount of missing data for these 836 subjects because individual tests were introduced
into the test battery at different points in time.

Appendix A contains descriptive data in the form of cross-tabulation tables for success
in advanced flight training versus selected background variables. The frequency table for
Trairing Success is presented first, followed by the cross-tabulation tables for Training




Success versus Gender, Axcession Source, College Major, AQT, FAR, and Age. The
frequencies for these variables, when the missing data are included, add up to 836.

In order to cope with this mass of data, we used hierarchical multiple regression
to screen out promising variables for attention.! When the dichotomous variable of
success in advanced flight training was employed as the criterion variable, only one set
of variables reached statistical significance. After the variables of age, previous flight
hours, sex, accession group, college major, AQT, and FAR had been entered in the
regression equation, only the eight variables from the AD, HT, and dual-task ADHT
reached significance as measured by the increase in R?. [4]

At this point, the number of variables had been pared to 15. We subjected these 15
variables to further analysis. First, we desired to construct a composite score based on
the eight ADHT variables. One feasible composite score was arrived at by utilizing only
the dual-task ADHT test in the following manner:

ADHTCS = .20 ZADHT6 - .50« ZADHTS — .10 ZADHT7 — .20« ZADHTS

This composite score consisted only of the four variables from the dual-task ADHT test,
i.e. when subjects were performing the absolute difference task and the horizontal track-
ing task at the same time. Because the subjects had been instructed to pay equal atten-
tion to both parts of th~ test, the composite score weighted the one variable concerned
with tracking error (ZADHTS) equally with the three variables concerned with absolute
difference performance (ZADHT6, ZADET7, and ZADHTS8). These last three variables
together were given a weight equal to 0.5 with the further breakdown that mean nuraber
of errors (ZADHT?T) was given only half the weight of mean number correct (ZADHT6)
and mean correct RT (ZADHTS). All four scores were first converted to z-scores be-
fore the composite score was formed. Any constituent z-score making up the ADHTCS
greater than 4 in absolute value was rejected as an outlier.

Success in advanced flight training was coded as a “1” and failure as a “0.” Perfor-
mance on AD number correct (ZADHT6) was the only variable positively correlated with
the success code. The other three variables, tracking error (ZADHTS5), AD number of
errors (ZADHT7), and mean correct RT (ZADHTS8), were negatively correlated with the
success code. This pattern of correlations explains the signs of the weighting coefficients
in the composite score so that ADHTCS as constructed was positively correlated with
the success code.

To illustrate, consider the computation of the ADHT composite score for a hypothet-
ical SNA who did much better than average on the tracking portion of the test, but
performed somewhat poorer on the absolute difference segment. His z-score for tracking
(ZADHTS) was —2. (Remember that a lower z-score for tracking error represents better
performance). On the other hand, his z-score for mean nuiaber correct on the absolute

1This and other related work was carried out by Dr. Harold Delaney of the University of New Mexico while he held an
ASEE Summer Faculty appointment at NAMRL in 1991.




difference segment (ZADHT6) was ~1, his z-score for mean number of errors (ZADHTT)
was +1.3 (a higher z-score represents poorer performance), and his mean correct RT
(ZADHTS8) was +1 (again, a higher z-score represents poorer performance). When these
values are inserted into the composite score equation, ADHTCS equals +0.47.

Furthermore, of the background variables and aptitude tests, only accession group,
college major, and AQT played a significant role. The results reported here concern
these three variables and the ADHT composite score. Since accession group and college
major were both coded with two dummy variables, the analysis will deal with six variables

in all.

DISCRIMINANT ANALYSIS

A discriminant analysis (DA) was conducted on these variables with the SPSS/PC+
statistical package [5]. Only cases with complete data on all variables were subjected to
analysis. Of 451 such cases, 432 students passed advanced flight training (PASS), and 19
students failed advanced training (FAIL).

There were 438 males and 13 females constituting the 451 SNAs with complete data.
Their age ranged from 20 to 29 with a mean age of 23.04 and a standard deviation of
1.43.

The relevant summary statistics from the DA were as follows. The canonical cor-
relation equaled .1712, indicating a slight influence of these six variables on success in
advanced flight training. A x? = 13.274 suggests that the means of the discriminant
function scores for the PASS group and the FAIL group were significantly different from
zero (p < .039, 6df). The covariance 1atrices for the two groups did not depart from
equality by Box’s M test.

Table 1 illustrates in detail the calculation of the discriminant score for one SNA.
The six variables plus a constant are shown in the first column. d; and d; are dummy
variables coding accession group, while d3 and d4 are dummy variables encoding college
major. Table 2 shows the relationship between these variables and their dummy variable
coding. The second column of Table 1 gives the unstandardized discrimination function
coefficients as computed by the program. The third column shows the values for a
hypothetical subject on the six variables. This subject had an AQT stanine score of
7, (on a scale of 1-9), and was a Naval Academy accession (d; = 0 d; = 0) with an
engineering/mathematics degree (dz = 1 dy = 0). We shall use the previously computed
ADHT composite score of .47 for this SNA.

The mean discriminant score for the entire FAIL group in the sample was .827, and
the mean discriminaat score for the entire PASS group was —.036. The mathematical
details of how the students are classified into a predicted PAGS or FAIL group based
on the discriminant score are given in appendix B. For the hypothetical SNA given in




Table 1. Unstandardized discrimination function coeflicients and values for six variables plus a constant
needed to compute a discriminant function score for a hypothetical subject.

Variable Coefficient Value Multiplication (z;)

AQT 263 7 1.843

d .586 0 0.000

d; —.238 0 0.000

da 1.474 1 1.474

dq 735 0 0.000

ADHTCS -1.324 0.47 —0.622

Constant -2.531 1 -2.531
Discriminant Function Score Srey T = .164

Table 2. The dummy coding for the accession source and college major variables.

Accession Source dy | ds

Naval Academy 0
AOC/0CS 1
ROTC/Marines 0

- OO

" College Major d; | dg

General Science 0 0
Engineering/Math | 1 0
Liberal Arts 0 1




Table 3. The classification mat. 'x arising from the discriminant analysis of 451 SNAs showing the predicted
passes and fails of the model ompared to the actual data.

PREDICTED
Pass Fail
Pass 339 93 432
ACTUAL
Fail 9 10 19
348 103 451

Table 1, the calculations in appendix B assign a probability of passing advanced flight
training of 63%. The SNA would, therefore, be assigned to the PASS group.

Table 3 shows the classification matrix that is produced when the DA program classifies
each of the 451 known pass or fails into a predicted pass or fail. The prior probabilities
parameter in the DA program was adjusted so that close to a 50% attrition rate would
be achieved. Frem Table 3, observe that 10 of 19 students have been correctly predicted
into the fail category. The observed success rate of 97.41% (339/348), when using these
variables to discriminate the PASS and FAIL groups, is achieved at the cost of rejecting
93 SNAs who otherwise would have passed.

Figure 2 shows the tlicoretical Gaussian distribution of the discriminant function
scores. The means are set to the values as calculated by the program, upsss = —.03637
and uparr = .82694, with opsss = oparr, = 1. The threshold discriminant score at .769
divides the two curves into four areas. The number of SNAs falling into each of these
four areas when the threshold discriminant function score is used to classify SNAs is also
shown. This is the same information presented in the classification matrix of Table 3.

Logistic regression is sometimes recommended as an alternative to discriminant anal-
ysis for finding the weights to attach to the variables that form the linear combination
used subsequently to classify cases. 'The logistic model may be more appropriate when
the explanatory variables, such a5 accession source and college major, are qualitative and
obviously not distributed 2s multivariate normal.

Accordingly, a logistic regression was carried out using the same six explanatory vari-
ables as in the DA model and with training success as the dependent variable. The
logistic regression parameters were estimated by maximum likelihcod. These parame-
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Figure 2. The theoretical Gaussian probability density functions of the discriminant function scores for
the PASS and FAIL groups in advanced flight training.
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Table 4. Logistic regression ccefficients for the same six variables and hypothetical values used in the DA
model. The logistic regression coefficients are meant to be compared with the DA coefficients shown in
Table 1.

Variable Coefficient Value Multiplication
AQT ~.231 7 ~1.614
d, -.566 0 0.000
d; 246 0 0.000
dy -1.690 1 -1.690
dy -1.068 0 0.000
ADHTCS 1,071 0.47 503
Constant 6.065 1 6.065

Logistic regression score :‘f=1 T; = 3.26

ter estimates are presented in Table 4 where they may be compared to those found in
Table 1. Except for a change in sign and a shift due to the constant, these coefficients
are comparable to the coefficients found using the DA estimates. The same hypothetical
SNA is used to compute a logistic regression score of 3.26 when using these coefficients.

The mean of the logistic regression scores was 3.522 for the PASS group and 2.745
for the FAIL group. The posterior probability of belonging to the PASS group for a
given logistic score was calculated, as explained in appendix B, in the same fashion as
for the DA model. The hypothetical SNA with the logistic regression score of 3.26 has
a posterior probability of 60% of passing as compared to 63% for the DA model. This
SNA would still be classified as belonging to the PASS group.

The classification matrix shown in Table 5 results when these probabilities are used to
classify all 451 SiiAs. We can see that the classification based on the use of the logistic
regression weights hardly differs from the outcome based on the DA weights.

BAYESIAN ANALYSIS

The success rate parameter, 8, in advanced flight training is now dealt with by a
standard Bayesian analysis [6]. Two situations are of interest in this report. These two
situations involve the comparison of the posterior probability density functions (PPDF)
for 8 when the current system selects students and the PPDF for 6§ when the discriminant
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Table 5. The classification matrix arising from the logistic regression classification of 451 SNAs. This table
can be compared to Table 3 which presents the DA classifications.

PREDICTED
Pass Fail
Pass 344 88 432
ACTUAL
Fail 10 9 19
354 97 451

analysis mode! is used to select students. The success rate parameter 8 is considered to
be a continuous parameter with 0 < § < 1. The likelihood of success in advanced flight
training is assumed to follow a binomial distribution. The merit of using the DA model
discussed in this report then hinges on the characteristics of its PPDF as compared to
the PPDF of the present system. ". he numerical details of this analysis are contained in
appendix C.

The prior probability density function shown in Fig. 3 is based on the calculations
given in Appendix C . This prior was selected to represent our state of knowledge based
on historical records for success rate in advanced flight training,.

Of the 836 SNAs in the data base, 788 pessed advanced flight training, and 48 failed.
The PPDF constructed using this information on success rate is also shown in Fig. 3 as
the solid curve. The mean of this PPDF is .9434, the mode is .9443, and the standard
deviation is .0076.

The effect from the additional information contained in the DA model on the PPDF
is illustrated in Fig. 3 as the dotted curve. Of the 836 SNAs in the data base, 451 SNAs
had data on the ADHT test. Referring back to the classification matrix in Table 3, focus
attention on the column the model predicted to pass. Of these 348 students, 339 students
passed and 9 failed. The mean of the PPDF using this information is .9688, the mode
is .9709, and the standard deviation is .0082. Since the DA model is based on a smaller
sample size than the present selection system, which makes use of the entire data base,
it is understandable that the standard deviation for the PPDF based on the DA model
is correspondingly larger.

Therefore, Fig. 3 shows the prior and the two PPDFs together on the same graph
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Table 6. Various Bayesian confidence intervals for the posterior probability density functions for the present
selection system and one using the DA model.

Present System DA Model

Mean 94.34% 96.88%

90% CI | 93.19 to 95.68% | 95.72 to 98.46%

95% CI | 92.90 to 95.86% | 95.40 to 98.78%

99% CI | 92.42 to 96.44% | 94.68 to 99.60%

for an overall visual comparison. The PPDF using information from the ADHT test is
shifted to the right, illustrating the improvement in the success rate as compared to the
current selection system.

Table 6 presents a final characterization of the two systems by calculating the 90, 95,
and 99% Bayesian confidence intervals® for the respective PPDFs. There is no overlap
in the 90% confidence intervals for the two systems. The confidence intervals for the
DA model are wider than the corresponding confidence intervals for the present system
because of the difference in sample size.

DISCUSSION

The coefficients of the variables in the DA model deserve some further comments in
light of the cross-tabulation tables presented in appendix A. The failure rates given there
are based on the larger sample size available for the background variables as opposed to
the smaller sample size when the ADHT was used in the DA model.

The positive coefficient for the AQT aptitude test means that a betier score is linked
to a lower probability of success in advanced flight training. (Remember that higher dis-
criminant function scores result in lower probability of success and vice versa). Although
it is contrary to intuition that SNAs with superior verbal and visuospatial skills have a
reduced chance of success in flight training, there is some evidence in the literature for
this phenomenon. (7]

2The terms credibility interval and highest posterior dersity (HPD) are also used in the Bayesian literature,
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The cross-tabulation for AQT supports this finding, especially in the range of scores
from 4 to 8 where the majority of the data are found. The probability of failure increases
from near 4% with an AQT score of 4 to over 10% with an AQT score of 8. It re-
mains somewhat disconcerting that a test the Navy uses to select individuals for training
eventnates to those having higher scores doing less well in advanced flight training,

In orde: of decreasing probability of success, the ranking of the accession source vari-

able (d; and d;) is,

1. ROTC/Marines
2. Naval Academy
3. AOC/0CS

The AOC/OCS accession source has traditionally done less well in all phases of flight
training, so their ranking here is not surprising. Perhaps slightly more surprising, though,
is the second place finish of the Naval Academy graduates. In our previous analysis of
success in primary flight training, the Naval Academy graduates had outperformed the
other two accesssion sources.

The cross-tabulation data show essentially no difference between the Naval Academy
graduates and the ROTC/Marines. The failure rate for these two groups hovers around
4.5%. The failure rate of the AOC/OCS group is clearly higher at around 7%.

College major, (dz and dy), had the ranking of

1. General Science
2. Liberal Arts/Other
3. Engineering/Math

This seems anomalous as one would expect the engineering/math majors to be the more
successful group. It may be that excessively analytical tendencies in some few individu-
als with engineering/math backgrounds are antithetical to “seat-of-the-pants” flying [7],
although this remains the merest sort of speculation.

The cross-tabulation data support the superiority of the general science majors vis-a-
vis the other two college major groupings with a failure rate of about 2.5% for general
science majors versus failures rates over 6% for the others. These data do not, however,
support any distinction between the engineering/math majors and the liberal arts/others
major as the DA model does.

Gender and Age were not included in the DA model, but, interestingly, note from
the cross-tabulation tables that the failure rate for women is comparable to that for
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the men. Of course, the overall number of women in the data base is extremely small,
but still accurately reflects the relative number of women in the training program. The
Age cross-tabulation table seems to suggest that increasing age results in poorer training
perforinance.

Returning to the DA model, the dval-task composite variable (ADHTCS) with its
negative coefficient was in the expected direction with higher scores leading to increased
probability of success. Although a strong relationship does not exist between the ADHT
composite score and success in advanced flight training, the attrition rate can be reduced
if the resulting cost of false rejections is acceptable.

For example, the DA model presented in this report could achieve a 50% reduction in
attrition rate at the cost of roughly a 20% false rejection rate. That is, about 20% of the
SNAs would attain a discriminant function score that would categorize them as failing
when, in fact, they would have passed. The classification matrix of Table 3 illustrates
this fact. Other desired attrition rates would entail different false rejection rates. These
inferences about a higher success rate are related to the particular variables chosen and
the specific linear composite of these variables as formed by the DA program, as well as
the prior probabilities and the costs associated with correct and incorrect decisions.

One rather naive approach to calculating cost savings is to multiply the expected
number of SNAs not needed to be trained by the cost per student for the appropriate
pipeline. In this numerical example we shall assume that 1000 aviators enter advanced
flight training. Under the present selection system we would expect that 5%, or 50 SNAs,
would attrite from the program. If one wers to adopt the threshold cut-off score from the
DA model resulting in a 50% reduction in attrition rate, only 2.5%, or 25 SNAs, would
attrite. Thus, 25 students would not need to be trained, resulting in a cost savings. Table
7 presents some not nunrealistic training costs per student for the situation where the 25
students are evenly spread out over the three pipelines. Even considering the cost of false
rejections, some significant monetary gain is achievable.

Now, a straightforward calculation similar to that above, which might save $13.6M
per year seems to support the argument for implementation of the additional tests. The
actual situation, however, is probably more subtle than this naive calculation.

The following question can be posed: “What changes to the training infrastructure
would have to be made in order to realize these projecied savings?” A little thought
would seem to indicate that the following factors would be among the majo components
involved in training costs.

1. The number of aircraft needed to carry out the training curriculum.

2. The number of flight instructors to fly these aircraft.

16




Table 7. One way of calculating cost savings in advanced flight training when attrition is reduced from 5%
to 2.5%. The calculation is based on 1000 aviators,

Pipeline Number  Savings Total

HELO 8 $300,000 $2.4M
PROP 8 $500,000 $4.0M
JET 9 $800,000 $7.2M
25 $13.6M

3. The number of hours flown during the training curriculum to reach some
desired level of proficiency.

4. The cost of fuel.

5. The cost of ground personnel and other support perscnnt;l.
6. The cost of maintaining the training aircraft,

7. 'The cost of simulators and simulator support.
8.

Billeting the students while they are in traiming,.

The follow-on question then becomes “How elastic are these various factors in response
to reduced attritions in order for savings to be achieved?” If, in fact, they are rather
inelastic, then the savings postulated above in Table 7 would be difficult to realize.

This is simply an inquiry about the inherent rigidity in the training infrastructure. If
the Navy has already bought the planes for a planned attrition rate, set up the billets for
flight instructors and ground personnel, and derived a curriculum that says students shall
fly these number of hops and these number of hours, then it would be difficult to adjust
these factors because of small changes in the attrition rate. Can the Navy actually buy 2
fewer planes, reduce 5 instructor billets, and fly 30 hours less in the advanced curriculum
simply because they have 25 fewer pilots to train? We also have to remember that these
advanced training costs are spread out over three different pipelines and conducted at
different training bases where presumbably the costs are again relatively fixed.

Perhaps, an easier way of putting this into perspective is to look at the numbers
involved in advanced flight training. If the Navy has a training infrastructure set up to
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train 1000 students, can it really trim that infrastructure because it now has “only” 975
students?

It doesn’t seem logical that the large savings as indicated by the calculations made
above are completely warranted if the rigidity of the training infrastructure is a reality.
It would be highly desirable to submit the scenario outlined ctbove to an expert in the
economic aspects of training for a critical analysis. The decision to implement additional
selection tests clearly depends upon such an analysis.

A second, more subtle, reservation about realizing savings due to slight reductions
in attrition rates concerns the “mental set” of the flight instructors. If some sort of
“corporate memory” or “corporate culture” exists in the training commands that dictates
adherence to attriting 5% of the students, then will or can the instructors adjust to
attriting only 2.5% of the students? Is each individual flight instructor able to fine tune
his assessment of flight proficiency so that a slightly smaller number of students is attrited
over all pipelines and over all training commands? In addition, flight instructors might
not feel like they are doing their job if they don't fail some minimum number of students.
So the net effect in the end might be that, although additional tests are effective and able
to predict some of the students who would have failed in advanced, the flight instructors
will ratchet up their grading so that the “expected” number of failnres occur anyway,
thus offsetting the effect of the additional tests.

CONCLUSION

A weak statistical relaticnship exists between a dual-task perforrnance test, accession
source, college major, an aptitude test, and success in advanced flight training. For
practical planning purposes, it is assumed that the decision to implement additional tests
would be based on meaningful increases in the success rate. Information about success
rate from our data is neatly encapsulated in the posterior probability density functioiis
shown in Fig. 3. These PPDFs show that the success rate, using the variables and model
mentioned above, is higher than the success rate of the present selection system, which
does not take these variables into account. More precisely, the 90% Bayesian confidence
intervals for these two density functions dc not overlap, leading one to the belief that
success rates for these two selection systems really are different. This higher success
rate entails a cost in terms of rejecting some candidates who would have been successful.
Whether the statistical differences in success rates can be translated into actual dollar
savings at the training command infrastructure level remains an open question.
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APPENDIX A

This appendix contains descriptive data on the backgound variables and training suc-
cess in advanced flight training for the 836 SNAs in our data base. The tables, except
for the first, are presented as cross-tabulation tables showing the breakdown of gender,
accession source, college major, AQT, FAR, and age with training success. The failure
percentage for each level of these variables is also presented. The total numbe., when
the missing data are included, add up to 836 for each variable.

TRAINING SUCCESS

Pass 788 94.26%

Fail 48 5.74%

Total 836

GENDER

Level Pass Fail Total % Fail
Male 770 47 817 5.75
Female 17 1 18 5.56
Missing 1

ACCESSION SOURCE

Level Pass Fail | Total % Fail
Naval Academy 173 8 ~ 181 4.42
RCTC/Marines 229 11 240 4.58
AOC/QCs 381 29 410 7.07
Missing 5
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COLLEGE MAJOR

Level Pass Fail Total % Fail
Engineering/Math 350 23 373 6.17
General Science 113 3 116 2.65
Liberal Arts/Other 320 22 342 6.43
Missing 5
AQT
Level Pass Fail Total % Fail
2 1 0 1 0.00
3 18 4 22 22.22
4 w4 4 98 4,08
5 262 12 274 4.38
6 206 11 217 5.07
7 146 12 158 7.59
8 44 5 49 10.20
9 17 0 17 000
Missing 0
FAR
Level Pass Fail Total % Fail
3 12 1 13 7.69
4 23 3 26 11.54
5 77 0 77 0.00
6 171 10 181 5.52
7 144 6 150 4.00
8 140 9 149 6.04
9 221 19 240 7.92
Missing 0
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AGE

Level Pass Fail Total % Fail
20 3 1 4 25.00
21 40 1 41 2.44
22 303 17 320 5.31
23 201 7 208 3.37
24 114 9 123 7.32
25 61 7 68 10.29
26 46 4 50 8.00
27 11 1 12 8.33
28 4 1 5 20.00
29 2 0 2 0.00
30 1 0 1 0.00

Missing 2
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APPENDIX B

The SPSS/PC+ Advanced Statistics Manual explains in general terms how cases are
classified by the discriminant analysis program. “A case is classified, based on its dis-
criminant score, in the group for which the pcsterior probability is largest.” [5]. Bayes’s
Theorem is used to calculate the posterior probability

P(DIG) * P(G)

ie1 P(DIGi) * P(G)

where P(G;|D} is the posterior probability for Group i, P(D|G;) is the likelihood of the
data given Group i, and P(G;) is the prior probability of Group 1.

P(Gi|D) =

For the two-group case, which is the focus of our attention in this study, this formula
explicitly reduces to

_ P(D|G,) * P(G))
P(GiID) = P(D|G,) * P(G;)l+ P(Dlle) * P(G)) (1)
P(G,|D) = 1-P(G:|D) (2)

SPSS apparently uses the minitaum x? rule [8], which is the same as using the maxi-
mum posterior probability.

X’
P(D|G\) = exp-+

2

. o\ 2

N 2 . .’l?'-'(l?

Since x¢ = ( = )

ande = 1

= \2
P(D|Gy) = exp-(—“”-{-‘—)-
_(m—fg)z

P(D|G;) = exp >

The discriminant scores, z;, are calculated by the SPSS/PC+ program so that o =
1, 7, is the mean of the students who passed, and F; is the mean of the students who
failed on the canonical discriminant function. Substituting these values for P(D|G;) and
P(D|G;) and where G, = PASS and G; = FAIL in equation 1 yields,

exp —(ﬁf-’—ﬁ * P(PASS)
exp - Z=Zl P(PASS) + exp _L’—';’)l * P(FAIL)

2

P(PASS|D) =
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A numerical example using this formula for the calculation of the posterior probability
of belonging to the PASS or FAIL group follows:

The discriminant score for the hypothetical student z =.1638
Group mean of discriminant scores for PASS T; = —.03637
Group mean of discriminant scores for FAIL I, = .82694
Prior probability of PASS P(PASS) = .58
Prior probability of FAIL P(FAIL) = 42

exp __(.1638-(;.0363@? * 58
Xp __(.16384—(';03637))7 % .58 + exp _!.1638—2.82694!2 * .42

9802 .58

(.9802 * .58) + (.8026 * .42)
= .627C

P(PASS|z; = .1638)

Therefore, the posterior probability of a PASS in advanced flight training given that
a student achieved a discriminant fuuction score of .1638 = .6278. From equation 2
the posterior probability of a FAIL = .3722. The probability of belonging to the PASS
group, given a discriminant score of .1638, is about 63% and, therefore, this student
will be classified by the program as a PASS because the PASS group has the maximum
posterior probability.

The prior probabilities parameter for the PASS and FAIL groups was changed in the
DA program through trial-and-error until the classification matrix yielded as close to
a 50% reduction in failures as possible. The values arrived at were P(PASS)=.58 and
P(FAIL)=.42, as given above. This parameter takes into account not only the prior
probabilities, but also the payoff matrix for all four possible decisions. It reflects the
willingness to tradeoff false rejections for a reduced number of failures and explains why
the prior probabilities were not, for example, simply P(PASS)=.95 and P(FAIL)=.05.

The threshold discriminant function score, (Zihreshotd), above which a student will be
classified as a FAIL, and below which the student will be classified as a PASS can be

determined

P(PASSImthreahoId 2?) = .50
P(PASS'mthreohold = 769) = .50
Any SNA who gets a discriminant function score above .769 will be predicted to fail

advanced flight training; any discriminant function score below .769 will be predicted to
pass.

In addition to this direct approach, logistic discrimination using the discriminant func-
ticn scores can be used as well to calculate the same posterior probabilities. It is an
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interesting exercise to make the comparison between the parameters used above and the
logistic discrimination parameters. This derivation is shown in the final section of the
appendix.

Ultimately, the goal is to derive an expression for the posterior probability for the two
groups as a logistic function.

P(G:|D il

( ll ) = 1+ea+ﬂx
1

P(G:|D) T7eathe

By using discriminant function scores to classify SNAs, it can be safely assumed that
these scores are normally distributed with a standard deviation equal to one.

To start the derivation of the logistic function for the posterior probabilities refer
back to equation 1. Dividing both the numerator and the denominator of equation 1 by

P(D|G,) * P(G,) yields, .
P(D|Gy)«P(G,
P(6:ID) = 7S

(D]G1)+P(Gs
P(D|(; ) P(Gy +1

Within this expression, focus attention on the likelihood ratio,

P(D|G;)
P(D|G,)

o

P(DIGy) = “1/2_”(’“

1 (=
02\/2—77 ¢
Sinceoy = o3=1
P(D|G,) _ e-¥-wm)
P(D|G;) = e-ile-m)

= e-slE—m)P+i(a-m)?

LS

P(D|G,) =

Expanding both quadratic terms in the exponent:

(z~m)? = 2% =2 +4}
(2= p2)® = 2° = 2eps + 43
1

1 1 1 1 1
—E(m ~m)’ + ‘2‘(3 —pa)? = "‘2‘372 + 2z - 5#% + 5172 — Ty + §ﬂ§
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1
= o - = 54 - )
By =y = (g1 — p2)(p1 + o)
. 1
= z(py — p2) — '2‘(#1 = pig)(p1 + pi2)

1
Let ap = —5(pm = pa)(p1 + p12)
B = p1— i
e'%(”‘l‘l)’*’%(z-#z)? = eao+ﬁx
e®ot+0z o _g{_%%
P(G,|D) = 2
(@lP) = e

The posterior probability is now very close to the required form. The final step is to
transform the expression

eao + ,@:L‘ % P(Gl)/P(Gz)

The general approach is to take inverse operations in succession and form a new constant.
Taking the natural log (In) and exponentiating are two such inverse operations. The
expression

o + Ba * P(G])/P(G2)

is rewritten as

e” % y1/y2
Step Operation Result
1 Take natural log In(e® * y1/y2) = z + In(yy /y2)
2 Form exponential e +10(y1/42) = o0 + Bz + In[(P(G1)/P(G2)]
3 Form new constant ay = ap + In[P(G,)/P(G;)]
' N e + Pz
4 Posterior Probability P(G, | D) = PR

It is quite easy at this point to show that
P(G,|D) = 1-P(G:\|D)
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1+ e +67 e1tBz

1 + ex+hz 1 + g1tz
-1

1+ em+Bz

The following numerical example shows that this derivation provides the same poste-
rior probability for a given discriminant score, P(PASS|z = .1638), as calculated before:

(3]

Qg

ay

ay + Pz

P(PASS|v = .1638)

il

i

i

fl

il

a0 +In[P(PASS)/ P(FAIL)]
1
—-2-(/1PAss — LFAIL)(BPASS + LFAIL)

—-;-(—.03637 ~ .82694)(—.03637 + .82694)

3413

.3413 + In[.58/.42]
.6640

KPASS = HFAIL
—.03637 ~ .82694
—.8633

.6640 — .8633(.1638)
5226

118z

1 4+ en+bz
6.5228

1 + 5226
6278
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APPENDIX C

The calculations in this appendix show how the prior and posterior probability den-
sity functions presented in Fig. 3 were derived. The numerical details of the Bayesian
confidence interval calculations are also presented.

The derivation of results presented in the main section of the report follows a standard
Bayesian treatment of a binomial distribution with a continuous parameter [6]. A beta
distribution was chosen as a natural conjugate prior for 8, the success rate parameter. A
beta distribution is characterized by two parameters, a and 3, both greater than zero.
The functional form for the prior distribution is

1
90 = Blar)

The prior distribution, g(6), chosen for this analysis had a = 95 and 8 = 5. The
expectation of 4 is

6°~1(1 - 6)°-!

a
BE(f) = - = 95
() a+f
The variance of 8 is defined as
af
9) = = .0005
var( ) (a+ﬁ)2(a+ﬁ+l)

The standard deviaticn of 8 is, therefore, .0217. These values of a and # were selected
to represent the state of knowledge for success rate in advanced flight training based on
historical records.

The beta function, B(a, ), is defined as

-1 -1)
B(a,f) = (“(a + ﬂ(_ 1)!)

The ordinate of g(8) can, therefore, be calculated by
g(6) = Kk 6%(1- @)

. (a+ 8~ 1)
! (a—1)(B=1)
ky = a-1

k3 = ,B“'l
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A numerical example of calculating the ordinate for the prior density for a specific
value of 6, for example, 6§ = .92, would be

g(8 =.92) = k; .92% (1--.92)*
99!
ky =

9414!
= 357,615,720

357,615,720  .92% « 08"
= 5.7787

The ordinate for § = .92 shown in Fig. 3 is 5.78.

The pusterior density function, that is, the density function for 6 after considering ad-
ditional data, besause of the convenient matheinatical properties of the natural conjugate
prior, is

1l

1
h(Bly) = — gvro~1(1 — gyr-vih-1
(6v) B(y +a,n—y+ 8) (-9
This is seen to be of the same functional form as for the prior density function, but
with the number of successes and the nuaber of tailures in the new data included. The
number of successes in the new information is ¢, and the number of failures in the new

information is n — y.

For a numerical example, consider the construction of the posterior probability density
function, h(f|y), for the present selection system. The ordinate of the posterior density
function at 8 = 955 is,

oo

Total sample size n = 836
Number of PASSes y = 788
Number of FAILures n--y =48
Prior density a = 95
Prior density B=5
Posterior density y+a-—1=2882
Posterior density n-y+pf—1=>52
1 852 52
=. = = — 1-—-46
h(0 = .955|y = 788) B(883,53)0 ( )
= 7.8339 % 10% % 955 * .045"
= 16.7495

In the sccond situation, the PPDF was constructed for § when we used information
from the ADHT dual task and certain biographical data. To calculate the ordinate for
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this PPDF at the same theoretical pass rate, h(6 = .955|y = 339),

Total sample size n = 348
Number of PASSes : y = 339
Number of FAILures n—y=9
Prior density a =95
Prior density B=5
Posterior density y+a—-1=433
Posterior density n—y+3-1=13
1
— 955ly = = %31 _ )3
h(8 = .955|y = 339) Blass, 14)0 (1-6)
= 1.6623 107 % .955% % ,045'3
11.3222

In this final section of appendix C we show how the confidence intervals were cal-
culated. One of the advantages of the Bayesian approach is the direct meaning of the
concept of a confidence interval. It is simply the desired area of the posterior probability
density function, usually calculated in equal increments starting from the mode of the
PPDF. The area of the PPDF for a 95% Bayesian confidence interval is represented by

u 1
'/; B(y+a’n"y+ﬂ)

where [ = lower limit of § and u = uppex: limit of 6 such that the value of the integral
equals the required confidence interval, namely .95. The Mathcad software package [9]
was used to vary the Jower and upper limits until the desired value of the integral was

reached. The lower and upper limits were systematically moved in equal increments from
the mode of the particular PPDF,

gyvte=1(1 — g)n-v+A-149 = 95
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